Archive

Archive for Ноябрь, 2010

Роль клубеньковых бактерий и механизм хемотаксиса

Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Такая способность организмов передвигаться в ответ на узнавание химических продуктов, называется хемотаксисом. В осуществлении контактного взаимодействия микроорганизмов С растением важное значение имеет так называемое лектин-углеводное узнавание растения микроорганизмом. Суть этого в том, что лектин корневых волосков растений прочно связывается с углеводом поверхности бактерий. Бактерии, внедрившиеся в корневой волосок, в виде сплошного тяжа (т.н. инфекционные нити), состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться. Возможно, бактерии выделяют гормональные вещества типа ауксина и именно это является причиной разрастания тканей, образуются вздутия — клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Бактерии при этом трансформируются сами, увеличиваются в размерах, поэтому их называют бактероиды.

Клубеньковые бактерии заражают только полиплоидные клетки корня. Ткань клубеньков, заполненная бактериями, приобретает розовую окраску, так как поте заражения в клетках бактерий образуется пигмент, сходный с гемоглобином, — леггемоглобин. Этот пигмент связывает кислород воздуха и тем самым предохраняет фермент нитрогеназу от воздействия кислорода. Исследования показали прямую зависимость между содержанием леггемоглобина и скоростью фиксации азота. При отсутствии леггемоглобина азот не усваивается. Информация об образовании леггемоглобина содержится в ДНК ядра клетки высшего растения. Синтезируется клетками растения-хозяина. Однако он образуется после их заражения. Гены растений, кодирующие образование клубеньков, носят название nod-GENE (нодулин-гены). Показано, что скопление бактерий вокруг корня вызывает выделение веществ (возможно олигосахаров), которые активируют т.н. нодулин-белок, индуцирующий транскрипцию нодулин-генов. Взаимоотношения между высшими растениями и клубеньковыми бактериями обычно характеризуют как симбиоз. Однако на первых этапах заражения бактерии питаются целиком за счет высшего растения, т. е. практически паразитируют на нем. В этот период рост зараженных растений даже несколько тормозится. В дальнейшем азотфиксирующая способность бактерий увеличивается, и они начинают снабжать азотистыми веществами растение-хозяина, вместе с тем бактерии получают от высшего растения углеводы (симбиоз). По мере дальнейшего развития наступает этап, когда высшее растение паразитирует на клетках бактерий, потребляя все образующиеся там азотистые соединения. В этот период часто наблюдается растворение (лизис) бактериальных клеток.

Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом. Посев бобовых растений ведет к повышению почвенного плодородия. Гектар бобовых растений в симбиозе с бактериями может перевести в связанное состояние от 100 до 400 кг азота за год. Значение этого трудно переоценить, если учесть, что азотные удобрения наиболее дорогостоящи, а в почве соединения азота содержатся в небольших количествах. Существуют и другие виды высших растений, у которых наблюдается симбиоз с микроорганизмами. Так, маленький водный папоротник азолла (Azolla) находится в симбиотических отношениях с азотфиксирующими цианобактериями. Азолла способна фиксировать до 0,5 кг азота на га в сутки. Некоторые деревья и кустарники (например, ольха, облепиха, лох) имеют в качестве симбионтов бактерии из рода актиномицеты. Большое значение имеют свободноживущие бактерии — азотфиксаторы. В 1893 г. русским микробиологом С.Н. Виноградским была выделена анаэробная азотфиксирующая бактерия Clostridium pasteurianum. В 1901 г. голландский ученый М. Бейеринк выделил две аэробные азотфиксирующие бактерии — Azotobacter chroococum, Azotobacter agile. Сейчас известен ряд видов Azotobacter. Свободноживущие азотфиксаторы могут быть факультативными аэробными или факультативными анаэробными. Для того чтобы эти микроорганизмы осуществляли процесс фиксации азота, необходимо присутствие молибдена, железа и кальция. Особенно важно присутствие молибдена. Свободно живущие азотфиксаторы {Azotobacter) усваивают в среднем около 1 г азота на 1 м2 в год. Усваивать атмосферный азот способны и многие другие бактерии: клебсиеллы, бациллы и т. д. Особый интерес представляют цианобактерии, вызывающие цветение пресных и океанических водоемов. В ряде стран их разведение практикуется на рисовых полях.

Ассоциативные азотфиксаторы

Ассоциативные азотфиксаторы были обнаружены в 70—80-х годах XX в. в лаборатории Д. Доберейнер в Бразилии (1976). Число их видов велико, как велико разнообразие ассоциативных взаимоотношений растений с микроорганизмами. Такие отношения характерны для ризосферных микроорганизмов, т. е. живущих на поверхности корневой системы растений. Часто микробиологи не делают различия между ассоциативными и свободноживущими азотфиксаторами. Последовательность взаимоотношений с растением-хозяином ассоциативных азотфиксаторов имеет определенное сходство с симбиотическими организмами: хемотаксическое узнавание, лектин-углеводное узнавание и этап установления прочных связей. Отсутствует только этап образования клубеньков. Эффективность азотфиксации ассоциативной микрофлорой меньше по сравнению с симбиотической, но ассоциативные азотфиксаторы продуцируют гормоны роста растений и обладают другими свойствами, положительно влияющими на рост и развитие растений (защита от фитопатогенов, разрушение токсических веществ). Наиболее изучены из этой группы микроорганизмы из рода азоспирилл (Azospirillum). Они колонизируют корни злаков и в связи с этим представляет интерес технология их выращивания. Азоспириллы легко инфицируют корневую систему злаков и других растений.

Классификация азотфиксаторов

Организмы, способные к усвоению азота воздуха, можно разделить на группы: 1) симбиотические азотфиксаторы — микроорганизмы, которые усваивают азот атмосферы, только находясь в симбиозе с высшим растением; 2) не симбиотические азотфиксаторы — микроорганизмы, свободно живущие в почве и усваивающие азот воздуха; 3) ассоциативные азотфиксаторы — микроорганизмы, обитающие на поверхности корневой системы злаков, т. е. живущие в ассоциации с высшими растениями. Важное значение имеют симбиотические азотфиксаторы, живущие в клубеньках корней бобовых растений (клубеньковые бактерии), относящиеся к роду Rhizobium. Связывание азота атмосферы возможно только при симбиотической ассоциации микроорганизмов этого вида и высшего растения в основном из семейства Бобовые. Существует большое количество разновидностей (штаммов) клубеньковых бактерий, каждая из которых приспособлена к заражению одного или нескольких видов бобовых растений. Это отражается в их названиях: Rhizobium lupini — клубеньковые бактерии люпина и Rhizobium trifolii— клубеньковые бактерии клевера и т. д..

Влияние внешних условий на поступление солей в растительный организм

При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пре­делах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. Так, при освещении поглощение фосфора уси­ливается уже через 2—5 мин. Быстрота реакции указывает на прямое действие света. Вместе с тем свет может оказывать и косвенное влияние. На свету в про­цессе фотосинтеза образуются углеводы, которые необходимы для дыхания. За­висимость поглощения от интенсивности дыхания проявляется четко. При дли­тельном выдерживании растений в темноте, после того как запас дыхательных субстратов исчерпан, поглощение солей не только прекращается, но может да­же наблюдаться их выделение. Нельзя также не учитывать, что на свету в про­цессе фотофосфорилирования образуется АТФ, энергия которой используется на поступление веществ. При уменьшении содержания кислорода до 2—3% интенсивность поступления солей остается на одном уровне. Лишь снижение концентрации кислорода ниже 3% вызывает падение поглощения примерно в два раза. Необходимо учитывать, что и интенсивность дыхания сохраняется на высоком уровне в широком диапазо­не концентраций кислорода. Падение интенсивности дыхания наблюдается при той же концентрации кислорода, при которой поглощение солей уменьшается. Концентрация ионов водорода (рН) также сказывается на поглощении со­лей.

Еще в опытах Д.А. Сабинина и И.И. Колосова было показано, что при подкислении раствора поступление катионов задерживается. Это происходит, по всей вероятности, в силу конкуренции, которая наблюдается между одинаково заряженными ионами за возможность вступить в реакцию с переносчиками. Вместе с тем подкисление улучшает доступность ионов фосфорной кислоты. Наоборот, подщелачивание внешнего раствора снижает поступление фосфора  благодаря переходу одновалентного иона Н2Р04в двухвалентный НР04 2- и трехвалентный Р043-, которые являются менее доступными для растения. Рез­кое изменение значения рН может также оказать влияние из-за повреждения мембран клетки. Как уже упоминалось, поглощение одного иона зависит от присутствия дру­гих ионов. Так, в присутствии легко поглощаемого аниона катионы той же соли поступают быстрее. Ионы с одинаковым зарядом обычно конкурируют между собой. Однако в некоторых случаях наблюдается противоположная закономер­ность. Так, при наличии в среде иона фосфора (Р043-) поглощение нитратов (N03) ускоряется.

Роль корневой системы в минеральном питании растения

Еще Кноп и Сакс показали, что растение хорошо усваивает питательные веще­ства из минеральных солей. Однако, в присутствии микроорганизмов сложно установить, что высшее растение по­глощает соединения именно в той форме, в которой они первоначально введе­ны в питательную смесь. Решение вопроса о доступных формах питательных веществ было осуществле­но в опытах, проведенных в стерильных условиях. Впервые И.С. Шуловым в лабо­ратории Д.Н. Прянишникова был разработан метод, при котором в стерильных условиях находилась только корневая система. В таких условиях надземные орга­ны растения развивались нормально. Было показано, что в отсутствие микроорга­низмов корневые системы растений прекрасно усваивают вещества, внесенные в питательную среду, в минеральной форме в виде растворимых солей. Некоторые органические растворимые соединения, в частности соединения азота (аминокислоты), также может поглощать растительный организм, хотя и с меньшей интен­сивностью. Более сложные нерастворимые органические соединения в отсутствие микроорганизмов усваиваться растением не могут.

Таким образом, основными ис­точниками питательных веществ для растений являются минеральные соли. Катионы и анионы поступают в растения независимо друг от друга с разной скоростью. Скорость поступления того или иного иона в большей степени оп­ределяется быстротой его использования. Эта закономерность была вскрыта путем определения изменения концентрации водородных ионов (рН) в водных культурах. Оказалось, что значение рН раствора меняется, если в составе соли катион и анион используются растением неравномерно. Так, если в качестве источника азота используется хлорид аммония NH4Cl, то при выращивании растений значение рН раствора сдвигается в кислую сторону. Это происходит в силу того, что аммоний необходим растению в значительно большем количе­стве, чем хлор, и поэтому поступает быстрее, обмениваясь на водород, адсор­бированный поверхностью корня. Выделяющийся водород с хлором образуют соляную кислоту. В результате среда подкисляется. Можно привести противо­положный пример. Если в качестве источника азота используется нитрат натрия, то N03будет использоваться растением интенсивнее, а, следовательно, и по­ступать быстрее. В окружающем растворе будет накапливаться NaHC03. Эта соль, подвергаясь гидролизу, образует NaOH (сильная щелочь) и Н2С03 (слабая кислота), будет сдвигать значение рН раствора в щелочную сторону. Эти опыты привели к тому, что стали различать физиологически кислые соли, например, NH4Cl, (NH4)2S04, и физиологически щелочные соли, например, NaN03, Са(Н2Р04)2.

Структура флоэмы

Дальний транспорт органических питательных веществ в нис­ходящем направлении осуществляется в основном по флоэме. Это положение получило подтверждение в опытах с мечеными атомами. Так, при нанесении 32С на листья в случае, если флоэму отщепляли от ксилемы и между ними прокла­дывали вощеную бумагу, меченый фосфор обнаруживался только во флоэме. Эти опыты подтвердили, что нисходящий ток как органических, так и минеральных веществ осуществляется именно по флоэме. На протяжении эволюции прово­дящая система растений постепенно изменялась. У мхов для передвижения ассимилятов служат просто удлиненные клетки. У водорослей поперечные стенки клеток перфорированы. По мере дальнейшей эволюции образуются ситовидные трубки, составленные из отдельных члеников. В отличие от ксилемы флоэма представляет собой совокупность живых кле­ток. В ее состав входит несколько типов специализированных клеток: сито­видные трубки или ситовидные клетки (у голосеменных и низших сосудистых растений), клетки-спутницы, передаточные клетки. Ситовидные трубки представляют собой вертикальные ряды вытянутых в большинстве случаев цилиндрических клеток с тонкими клеточными оболочками. Отдельные клетки (членики) отделены друг от друга ситовидными пла­стинками, пронизанными многочисленными порами, через которые проходят цитоплазматические тяжи. Ситовидные трубки образуются из клеток камбия и в первое время не отличаются от других клеток флоэмы. Они содержат подвижную цитоплазму с мно­гочисленными рибосомами, пластиды, митохондрии. В центре имеется вакуоль, окруженная тонопластом. По мере развития структура ситовидных трубок претерпевает значительные изменения: распадается ядро; уменьшаются разме­ры и количество пластид и митохондрий; исчезает тонопласт. На месте вакуоли образуется центральная полость. Цитоплазма располагается в пристенном слое. Отдельные продольные тяжи цитоплазмы пронизывают центральную полость. В полости располагаются сгустки округлой формы, по-видимому, это скопления микротрубочек. Одновременно с этими изменениями в ситовидных пластинках образуются поры, через которые проходят тонкие тяжи цитоплазмы (филаменты). По-видимому, именно в этот период ситовидные трубки служат ме­стом транспорта веществ. По мере старения в порах ситовидных пластинок от­кладывается углевод каллоза. Каллоза, сужая просветы пор, затрудняет передви­жение веществ. Каллоза синтезируется ферментом на плазматической мембране и откладывается между клеточной стенкой и мембраной. Предполагают, что в ак­тивно функционирующих элементах каллоза выполняет защитную роль. Кроме каллозы в порах ситовидных пластинок, а также в пространстве ситовидной трубки обнаружен флоэмный белок (Ф-белок). В зависимости от вида растения и фазы развития белок может быть разной формы (фибриллярным, глобулярным и др.). Синтезируется в клетках-спутницах. Предполагают, что Ф-белок не только участвует в транспорте органических веществ и предохраняет от потери флоэмного сока при повреждении, но и помогает противостоять высокому давлению, которое испытывают ситовидные трубки. У древесных растений отдельные элементы фло­эмы функционируют всего один год. По мере образования новых листьев отток из них идет по вновь образовавшимся ситовидным элементам. К каждой клетке ситовидной трубки примыкает богатая цитоплазмой клеткаспутница (у голосеменных — альбуминовые клетки). Эти клетки содержат крупное ядро и ядрышко, многочисленные митохондрии и рибосомы. Было по­казано, что клетки-спутницы имеют высокую метаболическую активность и снабжают ситовидные трубки АТФ. Клетки- спутницы и ситовидные трубки связаны между собой многочисленными плазмодесмами. В процессе онтогене­за они возникают из одной меристематической клетки. Клетки-спутницы участ­вуют в загрузке флоэмы и в передвижении ассимилятов. Также показано, что они необходимы для дифференциации ситовидных трубок. Ситовидные трубки и клетки-спутницы окружены паренхимными (передаточными) клетками.флоэма

Передвижение элементов минерального питания (восходящий ток)

Использование меченого фосфора позволило установить, что передвижение солей идет быстрее при усилении транспирации и замедляется при уменьшении этого процесса. Если листья закрыть полиэтиленовыми пакетами, то транспирация задержится, и скорость перемещения соответственно уменьшится. Эти опыты подтвердили, что передвижение питательных веществ в восходящем направлении идет по сосудам ксилемы вместе с водой. Однако скорость переноса растворенных веществ по ксилеме может отличаться от скорости передвижения воды. Это обстоятельство связано с тем, что растворенные вещества могут адсорбироваться стенками сосудов, а также передвигаться в радиальном направлении. В этом отношении интересные результат! были получены в опытах, где на определенном промежутке стебля кору (флоэму) тщательно отделяли от ксилемы. Между корой и ксилемой прокладывал! вощеную бумагу. Подготовленное таким образом растение помещали на пита тельную смесь, содержащую меченый калий. После пятичасовой экспозиции анализировались отдельные участки стебля. Оказалось, что передвижение калия в восходящем направлении идет главным образом по ксилеме. Вместе с те» в отщепленных участках флоэмы также было обнаружено некоторое количестве калия. Из этого следует, что в небольшом количестве восходящий ток идет и по ситовидным трубкам. Там, где расщепление не проводилось, калий почти равномерно распределялся между ксилемой и флоэмой, что служит доказательство» перемещения калия в радиальном направлении. Таким образом, основной ток минеральных солей из корневой системы происходит по ксилеме. Поскольку между ксилемой и флоэмой существует постоянный обмен, часть веществ может передвигаться и по флоэме. Между проводящими элементами ксилемы и флоэмы располагаются живые клетки камбия, и растворенные вещества из сосудов ксилемы частично поступают в клетки камбия. Последние оказываются своего рода регуляторами количества и состава растворенных питательных веществ, передвигающихся по ксилеме. Если какого-либо элемента слишком много в восходящем токе ксилемы, то он аккумулируется клетками камбия. Они же могут служить и источником недостающих элементов питания, передавая их по мере необходимости в ксилемный сок. Передвижение питательных веществ по ксилеме в восходящем направлении — это пассивный процесс, мало связанный с процессами обмена. Понижение температуры и даже умерщвление стебля горячим паром не прекращают передвижения по ксилеме и почти не сказываются на его скорости. Вместе с тел направление и распределение питательных веществ, передвигающихся по сосудам ксилемы, по органам растения, зависит не только интенсивности транспирации, но и напряженности процессов обмена веществ, происходящих в данном органе. Опыты, проведенные с использованием меченого фосфора, показали что чем выше расположен лист, чем он моложе, чем интенсивнее в нем процесс обмена, тем быстрее происходит использование питательных веществ и тем больше его аттрагирующая (притягивающая) способность. Одним из факторов влияющих на распределение питательных веществ, являются фитогормоны. Показано, что удаление верхушки растения вызывает равномерное распределение меченого фосфора по всем листьям независимо от их возраста, что связано с содержанием фитогормонов.

Фосфор

Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в ви­де окисленных соединений, главным образом остатков ортофосфорной кисло­ты (Н2Р04-, HP042-, Р043-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и мно­гих других, играющих центральную роль в обмене веществ. Фосфолипиды яв­ляются компонентами биологических мембран, причем именно присутствие фосфата в их структуре обеспечивает гидрофильность, остальная часть молеку­лы липофильна. Многие витамины и их производные, содержащие фосфор, являются коферментами и принимают непосредственное участие в каталитиче­ских реакциях, ускоряющих течение важнейших процессов обмена (фотосинтез, дыхание и др.). Фосфор содержится в составе такого органического соединения как фитин (Са—Mg соль инозитфосфорной кислоты), который является основ­ной запасной формой фосфора в растении. Особенно много фитина в семенах (до 1—2 % сухой массы). При присоедине­нии или переносе остатка фосфорной кислоты (фосфорилирование и трансфосфорилирование) в клетках растительного организма фосфор сохраняет свою степень окисления. Фосфорилирование белков осуществляется фермен­тами протеинкиназами и контролирует протекание обменных реакций в организ­ме, включая синтез белка и РНК, регуляцию активности ферментов, и лежит в основе работы сигнальных цепей. Для фосфора характерна способность к образованию связей с высоким энер­гетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энергию на самые различные биохимические и физиологические процессы. Важным соединением, содер­жащим макроэргические фосфорные связи, является АТФ. Фосфорная кисло­та, поступая в живые клетки корня, быстро включается в состав нуклеотидов, образуя АМФ и АДФ. Далее в процессе субстратного и окислительного фосфорилирования (анаэробная и аэробная фазы дыхания) образуется АТФ. По данным А.Л. Курсанова, уже через 30 с поступивший меченый фосфор (32Р) обнаружи­вается в АТФ. Недостаток фосфора влияет практически на все процессы жизнедеятельно­сти растений. Для нормального протекания фотосинтеза, дыхания, роста тре­буется фосфор. В почве фосфор находится в малорастворимой форме, поэтому в обеспечении питания фосфором велика роль метаболизма корней. Погло­щению фосфора способствует выделение корнями кислот, ферментов, углево­дистых веществ.

Железо

Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, не­смотря на ничтожное содержание, его роль рассматривается вместе с макроэле­ментами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана с его способностью переходить из окисленной формы (Fe3+) в восстановленную (Fe2+) и обратно. Железо вхо­дит в состав каталитических центров многих окислительно-восстановительных ферментов. В виде геминовой группировки оно входит в состав таких ферментов, какцитохромы, цитохромоксидаза, нитратредуктаза, нитритредуктаза, леггемоглобин, каталаза и пероксидаза. Цитохромная система является необходимым компонентом дыхательной и фотосинтетической электронтранспортной цепи. В силу этого при недостатке железа тормозятся оба этих важнейших процесса. Кроме того, целый ряд ферментов содержит железо в негемовой форме. К та­ким ферментам относятся некоторые флавопротеиды, нитрогеназа, железосо­держащий белок ферредоксин, фитоферритин и др. Фитоферритин — является металлопротеидом, в виде которого железо аккумулируется в клетке. Железо необходимо для образования хлорофилла. При этом железо катали­зирует образование предшественников хлорофилла 5-аминолевулиновой кисло­ты и протопорфиринов. Предполагают, что железо играет роль в образовании белков хлоропластов. При недостатке железа нет условий для образования таких важнейших компонентов хлоропластов, как цитохромы, ферредоксин и некото­рые другие. Возможно, это косвенно влияет на образование хлорофилла. В хлоропластах железо в негемовой форме входит в состав реакционных центров фо­тосистем I и II.

Калий

Содержание калия в растении в среднем составляет 0,9%. Он посту­пает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, ос­тальные 30% в адсорбированном состоянии. В противоположность кальцию калий снижает вязкость протоплазмы, повы­шает ее оводненность, увеличивая гидратацию белков. Эта особенность дейст­вия калия хорошо проявляется в том, что в его солях плазмолиз имеет выпуклую форму, протоплазма легко отстает от клеточной оболочки. Следовательно, калий является антагонистом кальция. Соли калия растворимы и участвуют в регуля­ции осмотического потенциала клетки. В частности, большое значение имеет К+ в регуляции работы устьиц. Известно, что открытие устьиц на свету связано с накоплением в замыкающих клетках ионов калия. При этом К+ в обмен на Н+ поступает из клеток, окружающих устьичные. Корневое давление также во мно­гом зависит от присутствия К+.

Калий активирует работу многих ферментных систем, например, гексокиназа — ка­тализирует фосфорилирование сахаров; пируваткиназа — катали­зирует перенос фосфорной кислоты с пирувата на АДФ, а также ферменты, участвующие в образовании АТФ в процессе окислительного фосфорилирования. Поэтому при недостатке калия резко падает содержание макроэргических фосфатов. Калий активирует и ряд ферментов цикла Кребса. Многие ферменты, участвующие в синтезе белка, требуют для своего действия присутствия калия. Недостаток калия замедляет транспорт сахарозы по флоэме. Под влиянием калия увеличивается накопле­ние крахмала, сахарозы, моносахаридов, что приводит к увеличению урожая. Циркуляция калия между ситовидной трубкой и сопровождающими клетками приводит к образованию градиента электрохимического потенция, что в свою очередь, определяет передвижение органических веществ.