Archive

Archive for the ‘Эволюция’ Category

Эволюция позвоночных

ЭВОЛЮЦИЯ ПОЗВОНОЧНЫХ

Предполагают, что предками позвоночных животных были малоподвижные кольчатые черви. Ископаемых остатков их не сохранилось, но среди современных животных есть такие, которые сочетают признаки хордовых и червей. Это полухордовые или кишечнодышащие, — червеобразные организмы , зарывающиеся в ил или песок. Их кишечник в передней своей части пронизан по сторонам отверстиями, сквозь которые выходит вода, попадающая через рот, и омывает кровеносные сосуды, принося кислород. Такие отверстия, служащие для дыхания, называются жаберными щелями). Спинная часть стенки кишечника у кишечнодышащих уплотняется и отходит сначала только в передней его части, подпирая хоботок и помогая рыться в иле. Это уплотнение стало, вероятно, отщепляться от кишечника все дальше и дальше к заднему концу, пока не отделилось в виде хорды. Жаберные щели и хорда обязательно появляются на ранних стадиях развития зародыша всех позвоночных. А позже у одних, например рыб, эти органы сохраняются до старости, а у других заменяются или зарастают, исчезают. Благодаря хорде животные стали быстрее плавать, так как тело получило упругость, а мышцы — опору. Для препятствования переворачиванию во время плавания вдоль тела появились продольные складки кожи, служащие стабилизаторами.

Животные с такими складками сохранились до наших дней — это ланцетники. От подобных животных произошли все позвоночные. У них вдоль по хорде стали закладываться хрящевые пластинки в каждом сегменте тела отдельно, сраставшиеся так, что получились хрящевые кольца, сквозь которые проходила хорда и лежавшаянад ней спинная нервная трубка — спинной мозг. Колечки эти стали позвонками (наследие сегментированности кольчатых червей), а в головном конце спинной мозг разрастался, образуя головной мозг, вокруг которого для его защиты образовалась хрящевая черепная коробка. Пространства между жаберными щелями тоже укрепились при помощи хрящей — возникли жаберные дуги. Плавниковые складки из непрерывных стали прерывчатыми, во внутрь этих складок стали врастать частоколом хрящевые опрные палочки — сформировались плавники.

Передние хрящевые дуги вскоре стали утолщаться и приобрели подвижность, образовав челюсти. Тело по всей поверхности покрылось острыми защитными костными чешуйками в виде сосочков, концами на- зад. Чешуйки вместе с кожей заходили и в рот, покрывая края челюстей. Здесь они усилились, образуя «терку», помогающую удерживать и измельчать добычу. Так возникли акуловые рыбы. От них ведет начало все разнообразие рыб, приспосабливающихся к разным условиям. Жаберные щели спрятались под жаберными крышками. Хрящевой скелет стал замещаться костной тканью. У многих рыб стал образовываться плавательный пузырь (у акул его не было) из выпячивания стенки кишечника. К стенкам пузыря подходят кровеносные сосуды  с растворами газов. У большинства рыб плавательный пузырь — лишь гидростатический орган, однако иногда он помогает при дыхании. Двоякодышащие рыбы, когда водоемы пересыхают, зарываются в ил. Жабры у них при отсутствии влаги перестают функционировать, но воздух свободно проходит через кишечник в плавательный пузырь. Венозные сосуды, оплетающие стенку пузыря, отдают углекислый газ, и кровь насыщается через те же стенки кислородом. Это показывает, что плавательный пузырь мог превратиться у древних рыб в легкое, если кровеносный сосуд, идущий к пузырю, ответвлялся раньше разветвления на жаберные капилляры и нес к пузырю венозную кровь.

Второе важное изменение связанно с усилением костей и мускулов грудных плавников, наблюдаемое у кистеперых рыб и помогающее им шагать на своих плавниках по дну водоемов. Оба этих новоприобретения позволили рыбам начать осваивать сушу во время очередного понижения уровня океана, когда оказались заболоченными огромные территории. Сейчас найдены в ископаемом виде все переходные стадии от рыб к земноводным. На животе таких переходных форм — стегоцефалов – еще сохранялась рыбья по происхождению костная чешуя, короткие конечности с 6 – 7 пальцами были малоподвижны, у некоторых сохранились жаберные дуги и боковая линия (рис. 211). У земноводных возникли легкие и второй круг кровообращения, веки для защиты глаз, чешуя заменилась слизистой кожей (дополнительный орган для дыхания), появились ноздри, и появился новый орган кроветворения — красный костный мозгтрубчатых костей. Поскольку воздух хуже проводит звук, чем вода, у земноводных образовалось среднее ухо, косточки которого (наковаленка, стремечко и молоточек) – это видоизмененные остатки жаберных дуг.

Однако так же, как современные земноводные, древние земноводные не могли жить вдали от воды, в которую они откладывают икру. Разорвать эту зависимость от водной среды удалось только пресмыкающимся, или рептилиям. Это произошло благодаря перемещению  части стадий развития зародыша внутрь водной среды яйца, защищенного от высыхания плотной кожистой скорлупой. Детеныш у них рождается уже с сформировавшимися легкими. Разнообразные рептилии приспосабливались к разным условиям и дали начало двум новым классам животных — птицам и млекопитающим. Предполагают, что бегающие на задних конечностях ящеры совершали прыжки и передними конечностями действовали на бегу, как рулями. Роговая чешуя у них стала вытягиваться, образуя гребенки, зачерпывающие при беге больше воздуха. Постепенно они переходили к планированию. Удлинившиеся чешуйки расщеплялись «елочкой», образуя перья, или по радиусам от центра, образуя пух. Постепенно происходило преобразовании  таких лазающих по деревьям и планирующих ящеров в птиц (рис. 213). Но полет требует больших затрат энергии, поэтому позволить себе такую «роскошь», могли только такие животные, у которых сердце стало четырехкамерным и произошло полное разделение двух кругов кровообращения. За счет полного разделения венозной и артериальной крови у них резко повысился уровень обмена веществ в организме, и они могли регулировать температуру своего тела — стали теплокровными.

Млекопитающие возникли из отдельной группы пресмыкающихся — звероящеров. Между чешуйками у них начали вырастать волоски в шахматном порядке, пучками по 3 – 5 штук. Из особо длинных и грубых волос на голове образовались усы, необходимые для осязания. Чешуя оттеснялась волосами и дольше всего сохранялась на хвосте (как и у современных нутрий и крыс). Чешуя сохранилась еще на концах пальцев в виде когтей. Волосяной покров в совокупности с четырехкамерным сердцем тоже позволил млекопитающим регулировать температуру тела и стать теплокровными. Самка не покидала вышедших из яиц детенышей, и они слизывали с нее выделения кожных желез, из которых вытекали, вероятно, как соленый пот, так и жировая смазка кожи. Позже железы стали неодинаковыми: одни стали выделять только пот, другие — только жир, а третьи, по краям живота, где детенышам было удобно лизать свою мать, — раствор мелких капелек жира с другими питательными веществами. Эти железы развивались и стали молочными железами.

Первые млекопитающие были яйцекладущими. Однако если яйцо в утробе матери задерживается и покрыто пористой скорлупой, то это позволяет зародышу питаться жидкими питательными веществами из крови матери. При утробном развитии яйца питание зародыша от стенок матки постепенно стало основным, а питание желтком утратило свое значение. Постепенно скорлупа стала только мешать питанию и совсем исчезла. Таким образом, возникли живородящие млекопитающие. Дальнейшее приспособление млекопитающих к разным условиям привело к появлению их современного многообразия.

Эволюция беспозвоночных животных

ЭВОЛЮЦИЯ БЕСПОЗВОНОЧНЫХ ЖИВОТНЫХ

Губки — одни из самых примитивных многоклеточных организмов. Они имеют пять типов специализированных клеток, но взаимозависимость между клетками тела еще очень мала. Об этом свидетельствует тот факт, что если губку протереть через сито, то образовавшаяся кашица, состоящая из отдельных клеток и групп клеток, оказывается способной к восстановлению целого организма. У губок сохраняется самое примитивное внутриклеточное пищеварение, и они способны как к половому, так и вегетативному (почкованием) размножению.

Кишечнополостные — это тоже двуслойные животные, но число специализированных клеточных элементов у них возрастает до 6 — 7, и в дополнение к внутриклеточному пищеварению добавляется пищеварение в пищеварительной полости (кишке). У кишечнополостных появляется диффузная нервная система и первые органы чувств — простые глаза, служащие только для различения света и тьмы, и статоцисты (органы равновесия). Они становятся способны к движению благодаря эпителиально-мышечным клеткам  с развитой системой актин-миозиновых волокон. Так же, как губки, кишечнополостные способны как к половому, так и к вегетативному размножению.

Кишечнополостные животные имеют радиальную симметрию из-за прикрепленного или малоподвижного образа жизни, когда пища может появиться с любой стороны. Переход к активному движению сопровождался появлением переднего конца тела, которым животное наталкивается на препятствия и на добычу. На этом конце начинают скапливаться нервные клетки и органы чувств, он становится головным, возникает двусторонняя (билатеральная) симметрия. Такая симметрия тела возникает у плоских червей, перешедших от плавания к ползанию по дну. Но у них еще сохраняется черты, оставшиеся от радиальносимметричных кишечнополостных предков: например, рот у планарии расположен все еще в середине живота, а кишечник не имеет анального отверстия и разветвлен как на правую и левую стороны тела, так и по радиусам от глотки во все стороны. Однако строение ресничных плоских червей отличается значительно более высокой организацией по сравнению с кишечнополостными животными.

Плоские черви, как и все эволюционно следующие за ними животные, трехслойны: в процессе онтогенеза у них формируется не два, как у губок и кишечнополостных, а три зародышевых листка. Между эктодермой, образующей покровы, и энтодермой, из которой построен кишечник, у них еще имеется промежуточный зародышевый листок — мезодерма. Важная особенность строения плоских червей — это наличие у них кожно-мышечного мешка. Так называется совокупность эпителия и расположенной непосредственно под ним сложной системы дифференцированных мышечных волокон. Впервые в эволюции у плоских червей возникает выделительная система. Пламенные клетки, имеющие внутри бьющиеся реснички, создают ток воды, который выносит собираемые отходы метаболизма в собирательные трубочки, ведущие к мельчайшим порам на поверхности животного. Нервная система состоит из парного  мозгового ганглия и идущих от него назад нервных стволов, соединенных кольцевыми перемычками. Тело плоских червей может быть достаточно протяженным, но сплющено в спинно-брюшном направлении, так как дыхательной и кровеносной систем у них нет, и кислород поступает в тело червя путем диффузии через всю поверхность тела. Плоские черви гермафродиты, но некоторые из них способны к бесполому размножению посредством поперечного деления перетяжкой.

Тело плоских червей не имеет полости. Полость тела, отличающаяся от пищеварительной полости тем, что не имеет сообщения с наружней средой появилась впервые у круглых червей. Полость тела заполнена жидкостью и выполняет несколько функций: 1) несжимаемая жидкость придает упругость телу червя (гидроскелет); 2) через полость тела происходит транспорт веществ, усвоенных из пищи, от кишечника к мускулатуре и половой системе; 3) через полость тела осуществляется вынос продуктов обмена к органам выделения, которыми служат специальные кожные железы. Таким образом, полость тела играет роль внутренней среды организма. Кроме того, у этого типа червей появилась задняя кишка и анальное отверстие, кишечник стал сквозным. Снаружи круглые черви одеты сложно устроенной многослойной кутикулой, которая вместе с гидроскелетом создает опору для мускулатуры. Из-за жесткой кутикулы рост сопровождается линькой. В отличие от плоских червей они раздельнополы и неспособны к регенерации.

Значительное усложнение строения происходит у кольчатых червей. Их общей особенностью является сегментированность туловища, составленного из большого количества повторяющихся члеников одинакового строения. Наиболее сложно устроены многощетинковые кольчатые черви. Для их туловища характерно присутствие на каждом членике тела парных боковых выростов — параподий. Это короткие, мускулистые и подвижные выросты тела, заканчивающиеся пучком щетинок. Движения параподий однообразны, они загребают спереди назад и, зацепляя щетинками за неровности субстрата, продвигают животное вперед, но это уже первые, хотя и очень примитивные конечности. У многощитинковых кольчатых червей впервые в эволюции появляются кровеносная система и органы дыхания. Органы дыхания представляют собой видоизмененный участок параподии, превратившийся в жабру. Кровеносная система замкнутая. Она состоит из спинного и брюшного сосудов, связанных кольцевыми сосудами, заходящими в жабры параподий. Движение крови осуществляется за счет сокращений стенок сосудов. Кровь содержит гемоглобин, но эритроцитов нет, а гемоглобин растворен прямо в жидкости крови. Выделительная система представляет собой пару трубочек в каждом сегменте тела,  открывающихся одним концом в полость тела, а другим — наружу. Нервная система кольчатых червей состоит из окологлоточного нервного кольца и брюшной нервной цепочки.

От древних кольчатых червей ведет начало несколько новых типов животных, в том числе и моллюски. Несмотря на то, что они совсем не похожи на червей, сходство личинок и некоторых черт внутреннего строения указывает на эволюционную родственность этих двух типов животных. Происхождение моллюсков иллюстрирует дополнение А.Н. Северцова к биогенетическому закону Мюллера-Геккеля: в онтогенезе могут закладываться новые пути филогенеза. Предполагают, что личинка каких-то кольчатых червей отклонилась в своем развитии от обычного пути, и это привело к возникновению нового типа животных. Тело моллюсков состоит из трех отделов — головы, туловища и ноги. Туловище — это внутренностный мешок на спинной стороне, нога — мускулистый вырост брюшной стенки тела, служащий для движения. Основание туловища окружено большой кожной складкой — мантией. Между мантией и туловищем — мантийная полость. В ней находятся жабры, некоторые органы чувств, открываются отверстия задней кишки, почек и полового аппарата. На спинной стороне, как правило, находится известковая раковина: углекислая известь добывается из заглатываемой моллюсками воды и пищи и затем выделяется специальными железами, расположенными на поверхности мантии. Кровеносная система моллюсков незамкнутая, но у них имеется сердце, состоящее из желудочка и 1 — 4 предсердий. Выделительная система представлена почками, нервная система — разбросанно-узлового типа. Моллюски подразделяются на три непохожих друг на друга класса — брюхоногие, двустворчатые и головоногие.

Брюхоногие моллюски имеют голову с 1 — 2 парами щупалец и пару глаз, нога сширокой ползательной подошвой, а раковина из одного куска. Характерная черта брюхоногих — асимметричность строения: во внутреннем строении у них происходит редукция правых органов ( правой половины печени, правого предсердия и правой почки), сопровождающая компенсаторным развитием их левых партнеров, а во внешнем строении — закрученность раковины почти всегда по часовой стрелке. Нога может видоизменяться для плавания у плавающих форм (крылоногие моллюски), а раковина иногда может отсутствовать (слизни, плавающие моллюски). Брюхоногие моллюски сумели освоить сушу: у наземных брюхоногих моллюсков вместо жабр развились легкие для дыхания.

Некоторые брюхоногие моллюски перешли затем к жизни в пресноводных водоемах, но жабры у них вновь не появились (закон необратимости эволюции) и они дышат атмосферным воздухом, заглатывая его во время всплытия на поверхность. У двустворчатых моллюсков голова редуцирована, и тело состоит только из туловища и ноги. Узкая нога служит им не столько для ползания, сколько для рытья песка или ила, раковина состоит из двух частей. Края мантийной полости, в которой находятся нога и жабры, обычно срастаются и образуются вводной и выводной сифоны. Двустворчатые моллюски, так же, как губки, фильтраторы: вода вводится через вводной сифон, приносит кислород к жабрам и пищевые частицы ко рту и выводится через задний выводной сифон. Головоногие моллюски — активные хищники, раковина у них рудиментарна  или отсутствует. Нога у них видоизменяется, образуя 8 — 10 щупалец с присосками для удержания добычи. У кальмара из другой части видоизмененной ноги образуется сифон, через который вода из мантийной полости с силой выталкивается наружу, сообщая животному обратный толчок. У головоногих моллюсков хорошо развиты органы чувств, так, например, многие из них обладают сложно устроенными глазами, очень похожими по строению на глаза человека  Однако глаза головоногих обладают аккомодацией, которая совершается не изменением кривизны хрусталика (как у человека), а его приближением и удалением от сетчатки.

Уже у древних кольчатых червей начался процесс дифференциации в строении первоначально одинаковых члеников в зависимости от выполняемой ими функции. Во всех случаях передние параподии изменяли свою специализацию. Для передвижения стали служить параподии следующих сегментов, а передние наклонялись вперед и стали подгребать пищу ко рту, а затем зажимать и измельчать ее. Таким образом из самых передних конечностей параподий образовалось несколько пар челюстей и ногочелюстей членистоногих животных. Остальные параподии по всему телу удлинились, расчленились и стали ногами. Однако челюсти и ноги были не единственными эволюционными приобретениеми членистоногих, повышение уровня их строения было связано также с появлением прочного хитинового наружного скелета. Такой скелет-оболочка был надежной защитой, в том числе и от обезвоживания, что создало возможность для членистоногих осваивать сушу. В то же время наружный скелет привел к распаду единого кожно-мышечного мешка на группы отдельных мышц-антагонистов. Тем временем специализация первоначально многочисленных конечностей продолжалась, что привело к неравномерному расчленению тела и образованию сначала двух отделов тела — головогруди и брюшка, а затем трех — головы, груди и брюшка. У паукообразных и насекомых членики брюшка потеряли свои конечности. Только на заднем конце они еще сохранились в виде придатков в видоизмененном виде — как яйцеклад или жало у насекомых и как паутинные бородавки у пауков.

Органы дыхания у членистоногих разнообразны. У ракообразных — это жабры, у паукообразных — легочные мешки и трахеи, а у насекомых — трахеи. Легочные мешки образовались как приспособление к жизни на суше в результате углубления жаберных выростов под покровы, где они были защищены от высыхания. Трахеи образовались позже, независимо от легочных мешков, как впячивания наружных покровов. У насекомых трахеи представляют собой разветвленную систему трубочек, доставляющих кислород во все части тела. У насекомых впервые образовались и крылья, но не из конечностей, как у птиц и летучих мышей, а из кожистых боковых складок. Такие складки сначала служили лишь для планирования, а затем приобрели собственную подвижность. Насекомые стали первыми летающими животными на Земле. Все эти усовершенствования позволили членистоногим и прежде всего насекомым широко расселиться, освоив самые разнообразные местообитания.

Появление многоклеточности в ходе эволюции

ЭВОЛЮЦИЯ БЕСПОЗВОНОЧНЫХ ЖИВОТНЫХ

Первые животные появились более 3.3 млрд. лет назад в архейский период архерозойской эры. Такие примитивные животные продолжают существовать и в наше время и их объединяют в тип простейшие. Несмотря на примитивность, они за миллиарды лет своего существования очень хорошо приспособились к разным условиям обитания, и это позволяет им сосуществовать наравне с более высокоорганизованными животными. Простейшие (корненошки, жгутиковые, инфузории и споровики) повсеместно распространены и их насчитывается более 30 тыс. видов. Роль органов у простейших выполняют клеточные органеллы, например, жгутики и реснички — органы движения, сократительные вакуоли — органы выделения и т.п. Органеллы могут быть высоко специализированы, как, например, трихоцисты некоторых инфузорий — короткие палочки в наружном слое клеточной цитоплазмы, которые при раздражении животного выстреливаются наружу, превращаясь в длинную упругую нить, вонзаются в тело врага или добычи и вносят в него ядовитое вещество. Базальные тельца ресничек инфузорий связаны между собой волоконцами, которые обеспечивают согласованную работу ресничек (которых может быть 10 — 15 тыс.), — зачаток нервной системы, а у некоторых инфузорий есть сократительные актин-миозиновые волоконца — зачаток мышечной системы движения. Демонстрируя высокую степень специализации различных клеточных органелл, инфузории являются пределом сложности строения одноклеточного организма.

Последующее повышение сложности организации могло быть связано только с появлением многоклеточности.

Многоклеточный организм отличается от колонии клеток тем, что клетки, по крайней мере, частично утрачивают самостоятельность и начинают специализироваться для выполнения разных функций. Простейшие многоклеточные животные двуслойные: имеют слой внутренних жгутиковых клеток для пищеварения (энтодерму) и слой наружных защитных клеток (экзодерму). Общепризнано, что многоклеточные животные произошли от колонии жгутиковых клеток, однако как произошло такое превращение, остается спорным вопросом. Существует несколько гипотез. Гастрейная гипотеза Геккеля предполагает, что стенка шарообразной колонии втянулась внутрь, и возник двуслойный организм с первичным ртом, ведущим в первичную пищеварительную полость. Такое преобразование (бластулы в гаструлу) действительно происходит в онтогенетическом развитии всех многоклеточных животных. Однако эта гипотеза не отвечает на вопрос, почему в эволюции произошло такое впячивание. По гипотизе Бючли предком мнооклеточных была не шаровидная колония, а колония в форме двуслойной пластинки: нижний слой клеток – для питания, а верхний — для защиты (такие организмы есть и сейчас — это трихоплакс).

Пластинка свернулась, и образовалась пищеварительная полость. Наконец, в соответствии с гипотезой Мечникова питание первых многоклеточных и колониальных жгутиковых сходно: насытившиеся отдельные клетки погружались вглубь колонии и там переваривали пищу. Со временем это разделение на внешнее и внутреннее стало постоянным.

Эволюция циклов воспроизведения

Если сравнить циклы воспроизведения растений разных отделов — от водорослей до покрытосеменных, то видна четкая закономерность: в процессе эволюции размеры и длительность жизни диплоидного спорофита увеличивались, а размеры и длительность жизни гаплоидного гаметофита уменьшались. У некоторых водорослей, например улотрикса, в каждом цикле воспроизведения есть только одна диплоидная клетка — зигота, а остальные клетки гаплоидны. У мхов гаплоидное u1087 поколение все еще крупнее и живет дольше, чем диплоидное. Но диплоидное поколение у мхов уже представляет собой сложное многоклеточное растение. У папоротникообразных соотношение гаплоидной и диплоидной фаз развития противоположно – диплоидное поколение — это крупное растение, тогда как гаплоидный гаметофит, являющийся еще самостоятельным растением, гораздо мельче и живет недолго. У голосеменных и покрытосеменных растений уменьшение гаплоидного поколения зашло так далеко, что их гаметофиты состоят только из нескольких клеток. У покрытосеменных мужской гаметофит (пыльцевое зерно) состоит всего из двух клеток, а женский гаметофит (зародышевый мешок) — из семи.

Объяснить эволюцию цикла воспроизведения растений, которая привела к уменьшению гаплоидного гаметофита до небольшой группы клеток, можно несколькими причинами. Во-первых, у диплоидного организма две копии каждого гена. Если испортился или плохо работает один из генов, его «напарник» исправит положение, и диплоидный организм не погибнет. Поэтому диплоидные организмы жизнеспособнее гаплоидных. Во-вторых, уменьшение мужского гаметофита связано с появлением опыления. У мхов и папоротников для переноса сперматозоида к яйцеклетке необходима водная пленка, по которой он мог бы плыть. Опыление устранило зависимость растений от воды, но чтобы переноситься по воздуху ветром или насекомыми-опылителями мужской гаметофит стал очень маленьким. В-третьих, для перехода к наземной жизни растениям были нужны проводящие и механические ткани. Но эти ткани имелись только у спорофитов. Поэтому на суше было больше шансов выжить у растений с продолжительной спорофитной и короткой гаметофитной стадиями цикла воспроизведения.

Эволюция растений

ЭВОЛЮЦИЯ РАСТЕНИЙ

Если водоросли появились примерно 1 миллиард лет назад, то первые наземные растения появились только 420 миллионов лет назад. 580 миллионов лет понадобилось растениям, чтобы перейти от водного к наземному образу жизни Завоевание суши было длительным и трудным процессом, стоившим многих жертв растениям. Во-первых, водорослям на суше надо было научиться защищаться от высыхания. Растения смогли жить на суше только после того, как у них появился эпидермис — специальная покровная ткань с толстыми клеточными стенками, пропитанными восковидным водонепроницаемым веществом (кутикулой). Вторая трудность была связана с получением питательных веществ. Все, что требуется для роста растения — вода, углекислый газ, минеральные соли, свет — все это вместе находится в водной среде окружающей водоросли. На суше они разделены в пространстве — углекислый газ и свет находятся наверху, в воздухе, а вода и минеральные соли — внизу, в почве. Те первые наземные растения, которые пытались жить в почве, получали достаточно солей и воды, но они были лишены света и им не хватало углекислого газа. А те, которые пытались жить на поверхности почвы, были обеспечены светом и углекислым газом, но испытывали недостаток в воде и не получали солей. Растениям было необходимо «научиться» расти сразу в две противоположные стороны — вверх к свету и вниз в почву. В-третьих, вода намного плотнее, чем воздух, и она поддерживает тело водоросли, не давая ему упасть. На суше растениям пришлось самим поддерживать свое тело с помощью специальных механических  тканей. В-четвертых, надо было защищаться от резких перемен температуры и резких перемен других внешних условий, от которых водорослей предохраняет водная среда. В-пятых, и это самое главное, вода служит для встречи гамет при половом размножении и для распространения спор при бесполом. Поэтому надо было как-то решить проблему с размножением на суше.

Поскольку элементы питания равномерно рассеяны в окружающей среде, растения в ходе эволюции постепенно потеряли подвижность и перешли к прикрепленному образу жизни. Они в течение всей жизни остаются на одном месте, а передвижение связано либо с размножением (гаметы, пыльца, споры), либо с постепенным нарастанием органов (например, корней в почве). Элементы питания, равномерно распределенные во внешней среде, поглощаются через наружную поверхность растения. Чем больше площадь поверхности, тем больше поглощение. Поэтому в ходе эволюции многоклеточные растения стремились к увеличению поверхности соприкосновения со внешней средой. Водоросли переходили от нитчатых форм к все более разветвленным. А наземные растения увеличивали поверхность тела, образуя плоские листья и при помощи многократного обильного ветвления побегов и корней.

Первыми растениями, приспособившимися к жизни на суше, были ныне вымершие псилофиты (от греч. «psilos» — скудный, голый + «fiton» — растение). Найдены ископаемые остатки некоторых псилофитов, и по ним был воссоздан внешний облик этих древних растений. Псилофиты были еще очень похожи на зеленых водорослей, от которых произошли. Их тело еще не было разделено на органы. Оно представляло собой разветвленный таллом. Предполагается, что листья в ходе эволюции растений возникли из отростков таллома путем их расположения в одной плоскости, скручивания и срастания. Стебли с их сложной проводящей системой, видимо, тоже возникли из талломов. Корни произошли из талломов, лежащих на поверхности почвы, а затем углубившихся в нее. Таким образом, все вегетативные органы возникли из таллома в связи с приспособлением растений к жизни на суше.

Мохообразные и папоротникообразные независимо друг от друга произошли от псилофитов. И те, и другие нуждаются в воде для своего полового размножения. Но папоротникообразные стали первыми сосудистыми растениями — у них впервые появились специальные проводящие ткани — ксилема и флоэма. Это позволило им широко расселиться по Земле в каменноугольном периоде и вырастать до гигантских размеров. Но резкое похолодание климата и повышение сухости привело к вымиранию большинства папоротникообразных. На смену папоротникообразным начали развиваться другие растения, произошедшие от семенных папоротников, но лучше них приспособленные к жизни на суше — голосеменные растения. Они сумели преодолеть зависимость от воды за счет возникновения опыления ветром. Когда появились голосеменные растения на Земле еще не было летающих животных. Цветковые растения появились в одно время с летающими насекомыми и птицами. Поэтому только у цветковых растений развились специальные приспособления для опыления животными. Цветковые растения — это вершина эволюции царства растений. Они господствуют ныне на Земле среди растений.

Эволюция полового размножения водорослей

ЭВОЛЮЦИЯ ПОЛОВОГО РАЗМНОЖЕНИЯ ВОДОРОСЛЕЙ

Зеленые водоросли возникли раньше других растений на Земле. Поэтому у них мы встречаем много разных способов полового размножения. На водорослях природа как бы испытывала его разные варианты. У зеленых водорослей впервые возникли такие удачные черты полового размножения, которые закрепились и используются у более высоко организованных растений.

Половое размножение зеленых водорослей усложнялось по двум направлениям.

Первое направление — это появление специальных клеток для полового размножения. У примитивных многоклеточных водорослей, например улотрикса, все клетки тела одинаковы, и каждая может начать образовывать споры или гаметы. У более развитых, например вольвокса, происходит «разделение труда» между клетками – одни клетки выполняют только функции питания и движения, а другие — только размножения. Второе направление — это постепенный переход от образования внешне совершенно одинаковых гамет (таких как у хламидомонады и улотрикса) к образованию гамет двух разных типов — мелких подвижных мужских и крупных неподвижных женских гамет (как у вольвокса). Это дает явные преимущества — многочисленность и подвижность сперматозоидов (мелких мужских гамет) обеспечивают их встречу с яйцеклеткой (крупной неподвижной женской гаметой), а большие размеры и запасы питательных веществ яйцеклетки обеспечивают зиготу питанием до тех пор, пока она не сможет самостоятельно питаться.

Эволюция водорослей

Эволюция растений была изучена по ископаемым остаткам древних растений и с помощью тщательного сравнения строения разных современных растений. По-видимому, первыми примитивными растениями были морские одноклеточные зеленые водоросли. Они перемещались с помощью жгутиков. У некоторых из них появилась жесткая клеточная стенка. Она служила для защиты от механических и химических повреждений. Но клеточная стенка у жгутиковых водорослей не могла быть полностью замкнутой, потому что подвижные жгутики — это выросты цитоплазмы, и они должны проходить через отверстия в клеточной стенке. Попав в пресный водоем, такие водоросли должны были погибать из-за проникновения в них пресной воды, стремящейся разбавить содержимое клетки. Приспособиться к жизни в пресных водоемах смогли только такие водоросли, у которых появилась способность откачивать накапливающуюся воду клеток с помощью пульсирующих вакуолей. Так как это делают современные хламидомонады. Но на откачку воды у жгутиковых водорослей тратится очень много энергии. Поэтому растения нашли другой способ избежать избыточного проникновения воды в клетку — клеточная стенка замкнулась. Но при этом клетки потеряли способность к активному передвижению, так как лишились жгутиков. Представителем таких одноклеточных водорослей является, например, ныне живущая хлорелла.

От одноклеточных водорослей произошли многоклеточные.

Повысить сложность строения в пределах одной единственной клетки трудно. Некоторые организмы увеличивали свои размеры не делясь на дочерние клетки, а образуя внутри тела многочисленные ядра и другие структуры. Такие организмы могут иметь довольно сложную форму. Например, у водоросли botridium — тело состоит из грушевидного пузырька величиной с булавочную головку и отходящих от него в почву бесцветных ветвистых ризоидов. Внутри тела нет никаких клеточных перегородок. Еще сложнее устроена морская водоросль каулерпа, достигающая 10-50 см. Ее тело состоит из стелющегося по дну моря горизонтального таллома, похожего на корневище, от которого вверх отходят ответвления, похожие на листья. Однако у каулерпы внутри тела тоже нет никаких клеточных перегородок. Организмы, подобные ботридиуму и каулерпе, получили название неклеточных. Неклеточные организмы не могут образовывать специальных тканей и, кроме того, они очень уязвимы, если их поранить, то страдает живое содержимое всего тела.

Самым удачным стал другой путь повышения сложности строения — это появление многоклеточности. Благодаря многоклеточности появилась специализация.

Специализация — это превращение одинаковых частей в неодинаковые для выполнения различных функций. Например, у улотрикса все клетки одинаковые, потому что они выполняют одинаковые функции. У вольвокса одни клетки выполняют функцию  питания и движения, а другие — только функцию размножения. Поэтому они различаются по внешнему виду и строению.

Значит, у вольвокса появилась специализация клеток. Переход от одноклеточных к многоклеточным водорослям осуществлялся через колониальные формы. Сначала после деления дочерние клетки не отделялись друг от друга и жили вместе одной колонией, скрепленные только слизью. Затем связи между клетками усилились и образовались многоклеточные организмы. В густых зарослях или при расселении на глубину водоросли испытывали недостаток света. Поэтому водоросли, которые в погоне за светом могли удлиняться с большей скоростью, имели больше шансов выжить. Сначала такое удлинение происходило только за счет деления клеток. Но потом наряду с этим появился новый, значительно более быстрый способ — удлинение за счет растяжения клеток путем образования крупной центральной вакуоли. Так в растительной клетке появилась крупная вакуоль.

Эволюционная биология

Эволюция в широком смысле этого слова обозначает постепенное изменение сложных систем во времени. Говорят об эволюции звезд и галактик, ландшафтов и биоценозов, языков и общественных систем.

Биологическая эволюция – это наследственное изменение свойств и признаков живых организмов в ряду поколений. В ходе биологической эволюции достигается и постоянно поддерживается согласование между свойствами живых организмов и условиями среды, в которой они живут. Поскольку условия постоянно меняются, в том числе и в результате жизненной активности самих организмов, а выживают и размножаются только те особи, которые наилучшим образом приспособлены к жизни в измененных условиях среды, то свойства и признаки живых существ постоянно меняются. Условия жизни на Земле бесконечно разнообразны, поэтому приспособление организмов к жизни в этих разных условиях породило в ходе эволюции фантастическое разнообразие жизненных форм.

Эволюционная биология это наука, которая изучает, как происходила и происходит эволюция, исследует механизмы, закономерности и пути эволюции. Выдающийся биолог Феодосий Добржанский сказал: «Биология приобретает смысл только в свете эволюции». Эволюционная биология дает ключ к пониманию принципов, по которым устроена жизнь на Земле. Базируясь на знании эволюционной истории живых организмов и понимании процессов, которые определяют их наследственные изменения и приспособление друг к другу и окружающей среде, эволюционная биология дает объяснение всем биологическим явлениям: от молекулярных до биосферных. Она объясняет, как и почему ныне живущие организмы, включая нас самих, стали такими, какие они сейчас. Эволюционная биология внесла фундаментальный вклад в понимание того, как устроен мир вокруг нас и какое место мы занимаем в этом мире.

Идеи, методы и подходы эволюционной биологии внесли и продолжают вносить фундаментальный вклад во многие отрасли биологии, такие как генетика, молекулярная биология и биология развития, физиология, экология, а также в геологию, палеонтологию, медицину, сельскохозяйственные науки, психологию, антропологию, информатику и другие науки.

Понимание механизмов эволюции чрезвычайно важно для разработки методов сохранения фауны и флоры. Без анализа механизмов эволюции популяций исчезающих видов невозможна разработка эффективных методов их сохранения в природе. Изучение и сравнение геномов различных видов позволяет выделять гены, которые могут оказаться полезными для повышения продуктивности культивируемых растений и домашних животных. Тот же подход используется для выделения и картирования генов, вызывающих наследственные болезни человека. Методы и принципы эволюционной биологии позволяют установить механизмы появления и распространения инфекционных болезней, анализировать эволюцию устойчивости патогенных бактерий и вирусов к лекарственным средствам.