Одномембранные органоиды (органеллы)

Одномембранные органоиды (органеллы) К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды образуют единую вакуолярную систему, которая обеспечивает разделение цитоплазмы на компартменты – отсеки, в которых протекают различные реакции. У прокариот вакуолярная система, построенная на основе постоянных внутриклеточных мембран, отсутствует. Ее функции выполняют впячивания плазмалеммы –… Читать далее Одномембранные органоиды (органеллы)

Органоиды движения

Органоиды движения. К органоидам движения относятся жгутики и реснички. Эти органоиды устроены сходным образом, однако между ними имеются некоторые различия. Жгутики заметно длиннее ресничек, их длина достигает 150 мкм и более. Количество жгутиков на клетку обычно невелико (1..7, редко – несколько десятков или сотен), количество ресничек, как правило, значительно больше (до 10…15 тысяч, реже несколько… Читать далее Органоиды движения

Клеточный центр

Клеточный центр (центросома) – это органоид, контролирующий образование микротрубочек цитоскелета, органоидов движения, веретена деления. Клеточный центр обнаружил и описал В. Флемминг (1875), но подробно его структура была изучена с помощью электронного микроскопа. Основу клеточного центра составляют центриоли. Одиночная центриоль представляет собой полый цилиндр диаметром около 0,15 мкм и длиной 0,3…0,5 мкм (реже – несколько мкм).… Читать далее Клеточный центр

Рибосомы

Рибосомы – это немембранные органоиды, обеспечивающие биосинтез белков с генетически обусловленной структурой. Рибосомы в комплексе с внутриклеточными мембранами впервые выделил А. Клод (1940). В 1956-1958 гг. рибосомы были выделены в чистом виде, а Р.Б. Робертс (1958) предложил сам термин «рибосома». В 1955-1959 гг. было доказано, что на рибосомах синтезируются полипептиды. Изучение структуры рибосом практически завершилось… Читать далее Рибосомы

Немембранные органоиды

Немембранные органоиды (органеллы) К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички).

Функции цитоскелета

Функции цитоскелета: 1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки. 2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других… Читать далее Функции цитоскелета

Цитоплазматический матрикс. Цитоскелет

Цитоплазматический матрикс (гиалоплазма, цитозоль) – это основное вещество цитоплазмы. Матрикс представляет собой водорастворимую часть цитоплазмы. Содержит около 90 % воды, в которой растворены макромолекулы и молекулярные комплексы (образующие коллоидный раствор), а также малые молекулы и ионы (образующие истинный раствор). В целом матрикс представляет собой жидкий коллоидный раствор – золь. При определенных условиях матрикс переходит в… Читать далее Цитоплазматический матрикс. Цитоскелет

Цитоплазма

Цитоплазма – это часть живой клетки (протопласта) без плазматической мембраны и ядра. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). В 1830 г. Я. Пуркинье предложил термин «протоплазма» для обозначения живого вещества в целом. Далее Р. Кёлликер (1862) ввел термин «цитоплазма» для… Читать далее Цитоплазма

Основные транспортные белки биомембран и механизм натрий-калиевого насоса

Основные транспортные белки биомембран и механизм натрий-калиевого насоса 1. Транспортный белок порин. Бактерии имеют одну, но достаточно сложно устроенную клеточную стенку. Плазматическая мембрана грамотрицательных бактерий защищена от внешней среды сетью пептидогликанов (муреин) и дополнительной наружной мембраной. Метаболиты, которые бактериальной клетке необходимо абсорбировать или высвободить, должны иметь возможность без труда пересекать наружную мембрану. Для обеспечения процесса… Читать далее Основные транспортные белки биомембран и механизм натрий-калиевого насоса

Проницаемость биомембраны. Активный и пассивный транспорт веществ через мембраны

Проницаемость биомембраны. Активный и пассивный транспорт веществ через мембраны Низкомолекулярные нейтральные вещества, такие, как газы, вода, аммиак, глицерин и мочевина, свободно диффундируют через биомембраны. Однако с увеличением размера молекулы теряют способность проникать через биомембраны. К примеру, биомембраны непроницаемы для глюкозы и других сахаров. Проницаемость биомембран зависит также от полярности веществ. Неполярные вещества, такие, как бензол,… Читать далее Проницаемость биомембраны. Активный и пассивный транспорт веществ через мембраны