В основе воспроизведения биологических систем лежит деление клеток: «От клеточного деления зависят не только явления наследственности, но и сама непрерывность жизни».
Универсальным способом деления эукариотических клеток является непрямое деление, или митоз (от древнегреч. «митос» – нить). При митозе полностью сохраняется объем и качество исходной наследственной информации. Успех митоза не зависит от числа хромосом в клетках. Поэтому именно митоз является основой индивидуального развития многоклеточных организмов. Кроме того, митоз является цитологической основой вегетативного размножения у грибов и растений и бесполого размножения у животных. В этом заключается биологическое значение митоза.
Митоз – это циклический (повторяющийся) процесс, важнейшим моментом которого является расщепление каждой хромосомы на две дочерние хромосомы и их распределение по двум вновь образующимся клеткам. Интервал между завершением митоза в исходной клетке и завершением митоза в ее дочерней клетке называется клеточный цикл. Полный клеточный цикл включает интерфазу и собственно митоз. В свою очередь, собственно митоз включает кариокинез (деление ядра) и цитокинез (деление цитоплазмы).
Интерфаза – это период между двумя клеточными делениями. В интерфазе ядро компактное, не имеет выраженной структуры, хорошо видны ядрышки; хромосомы в большинстве случаев не видны. Интерфаза включает три стадии: пресинтетическую (обозначается символом G1 – «джи-один»), синтетическую (S – «эс») и постсинтетическую (G2 – «джи-два»).
На пресинтетической стадии в основе каждой хромосомы лежит одна двуспиральная молекула ДНК. Количество ДНК в диплоидной клетке на этой стадии обозначается символом 2с. Клетка активно растет.
На синтетической стадии происходит репликация ДНК. Параллельно удваиваются центриоли (если они имеются).
На постсинтетической стадии репликация ДНК уже завершена. В состав каждой хромосомы входит две двуспиральные молекулы ДНК, которые являются точной копией исходной молекулы ДНК. На этой стадии количество ДНК в диплоидной клетке обозначается символом 4с. Синтезируются вещества, необходимые для деления клетки.
В конце интерфазы процессы синтеза прекращаются. Далее начинается кариокинез, который включает ряд фаз: профазу, метафазу, анафазу и телофазу.
Профаза – первая фаза митоза. Хромосомы спирализуются и становятся видны в световой микроскоп в виде тонких нитей. В конце профазы ядрышки исчезают, ядерная оболочка разрушается, и хромосомы выходят в цитоплазму.
Метафаза. Формируется митотический аппарат, в состав которого входит веретено деления (ахроматиновое веретено) и центриоли или иные центры организации микротрубочек. Хромосомы располагаются в экваториальной плоскости клетки, образуя метафазную пластинку.
В метафазе хромосомы максимально спирализованы. Каждая хромосома состоит из двух продольных субъединиц – хроматид. Обе хроматиды совершенно идентичны. В основе каждой хроматиды лежит одна молекула ДНК. Конечные участки хроматид называются теломеры. Хроматиды связаны между собой в области первичной перетяжки, которая называется центромера.
Анафаза. Происходит разделение хромосом на хроматиды. С этого момента каждая хроматида становится самостоятельной однохроматидной хромосомой, в основе которой лежит одна молекула ДНК. Однохроматидные хромосомы в составе анафазных групп расходятся к полюсам клетки.
Телофаза. Веретено деления разрушается. Хромосомы у полюсов клетки деспирализуются, вокруг них формируются ядерные оболочки. В клетке образуются два ядра, генетически идентичные исходному ядру. Содержание ДНК в дочерних ядрах становится равным 2c.
Телофаза (окончание кариокинеза) сопровождается цитокинезом. В цитокинезе происходит разделение цитоплазмы и формирование мембран дочерних клеток. У животных цитокинез происходит путем перешнуровывания клетки. У растений цитокинез происходит иначе: в экваториальной плоскости образуются пузырьки, которые сливаются с образованием двух параллельных мембран. На этом митоз завершается, и наступает очередная интерфаза.
Таким образом, в ходе митоза образуется две клетки с идентичными хромосомными наборами.
Дальнейшая судьба этих клеток может быть различна. В одних случаях образуются две равноценные клетки, которые делятся дальше. Такой стволовой митоз наблюдается при образовании клеток крови, а также раковых клеток. В других случаях одна из клеток вступает в новый клеточный цикл, а вторая теряет способность к делению. Такой асимметричный митоз характерен для меристем растений. И, наконец, существует трансформирующий митоз, при котором обе дочерние клетки утрачивают способность к делению.
В ряде случаев наблюдается увеличение числа хромосом в ядре. Это явление называется полиплоидизация. Образование полиплоидных клеток является или следствием нерасхождения хромосом в анафазе, или результатом эндомитоза (закрытого митоза), протекающего внутри ядра. В других случаях возникает многоядерность – увеличение количества ядер в клетке. Обычно возникает при разобщении кариокинеза и цитокинеза: число ядер увеличивается, но клетки не делятся. Многоядерность характерна для низших эукариот. У многоклеточных животных многоядерные структуры образуются при слиянии одноядерных клеток.