Световая фаза

Преобразование энергии света в энергию химических связей начинается в реакционных центрах, входящих в состав мембран тилакоидов. В составе реакционных центров обнаруживаются разнообразные сочетания пигментов: хлорофиллы а и b, каротиноиды и другие. Кроме указанных пигментов в мембранах обнаруживаются разнообразные вещества – переносчики электронов и протонов. Основные сочетания пигментов и переносчиков называются фотосистемы: фотосистема I и фотосистема II.

Универсальным способом образования АТФ является механизм нециклического фотофосфорилирования. Энергия света, поглощенная пигментами, преобразуется в энергию электронов. Свободные электроны образуются при фотолизе (фотоокислении) воды – расщеплении молекулы Н2О с затратой световой энергии. При фотолизе воды выделяется молекулярный кислород. Энергия электронов используется для создания протонных резервуаров внутри тилакоидов и формирования электрохимических потенциалов на мембранах тилакоидов. В свою очередь, энергия электрохимического потенциала используется для синтеза АТФ. Электроны, потерявшие энергию, используются для восстановления НАДФ.

В действительности световые реакции протекают более сложно.

Фотосистема II поглощает высокоэнергетические кванты света. Электроны хлорофилла переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон с избытком энергии. Окисленный хлорофилл отщепляет один электрон от молекулы воды. Вода разлагается на протон Н+ и свободный радикал НО·. Два радикала НО· объединяются в молекулу Н2О2, которая разлагается каталазой на Н2О и О2. Процесс расщепления воды под воздействием света называется фотолиз. При фотолизе выделяется молекулярный кислород как побочный продукт световых реакций фотосинтеза:

4 Н2О → 4 Н+ + 4 НО· + 4 ē;    4 НО· → 2 Н2О2 → 2 Н2О + О2

Высокоэнергетические электроны от молекул хлорофилла присоединяются к хинонам, образуя восстановленные хиноны (KoQ 2–). Восстановленные хиноны диффундируют на внешнюю сторону мембраны тилакоида (к строме). Здесь к хинонам присоединяются протоны, которые всегда присутствуют в водных растворах вследствие электролитической диссоциации воды. Хиноны вместе с протонами диффундируют на внутреннюю сторону мембраны (к матриксу тилакоида). Под воздействием цитохромов b протоны отщепляются от хинонов и переходят в матрикс тилакоида. Затем хиноны вновь диффундируют к строме, где вновь присоединяют протоны. Таким образом, строма служит источником протонов, а матрикс тилакоидов – протонным резервуаром.

Электроны, частично израсходовавшие энергию на перенос протонов, отщепляются от хинонов и поступают на промежуточный переносчик – цитохром f.

Фотосистема I поглощает низкоэнергетические кванты света. Электроны хлорофилла фотосистемы I переходят в возбужденное состояние, а затем молекула хлорофилла теряет один возбужденный электрон. Потерю электронов молекулы хлорофилла восполняют, забирая электроны от цитохромов f. Электроны от фотосистемы I через промежуточные мембранные переносчики (ферредоксин и другие) используются для восстановления немембранного переносчика электронов и протонов НАДФ:

НАДФ+ + 2 ē + 2 Н+ → НАДФ·Н+Н+.

Избыток протонов из матрикса переходит через канал АТФазы в строму. Энергия электрохимического потенциала используется для фотофосфорилирования – синтеза АТФ из АДФ и неорганического фосфата. В итоге энергия света расходуется на синтез АТФ и на восстановление НАДФ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *