Роль клубеньковых бактерий и механизм хемотаксиса

Корневые системы бобовых растений обладают специфическими корневыми выделениями. Благодаря этому клубеньковые бактерии скапливаются вокруг корневых волосков, которые при этом скручиваются. Такая способность организмов передвигаться в ответ на узнавание химических продуктов, называется хемотаксисом. В осуществлении контактного взаимодействия микроорганизмов С растением важное значение имеет так называемое лектин-углеводное узнавание растения микроорганизмом. Суть этого в том, что лектин корневых волосков растений прочно связывается с углеводом поверхности бактерий. Бактерии, внедрившиеся в корневой волосок, в виде сплошного тяжа (т.н. инфекционные нити), состоящего из соединенных слизью бесчисленных бактерий, проникают в паренхиму корня. Клетки перицикла начинают усиленно делиться. Возможно, бактерии выделяют гормональные вещества типа ауксина и именно это является причиной разрастания тканей, образуются вздутия — клубеньки. Клетки клубеньков заполняются быстро размножающимися бактериями, но остаются живыми и сохраняют крупные ядра. Бактерии при этом трансформируются сами, увеличиваются в размерах, поэтому их называют бактероиды.

Клубеньковые бактерии заражают только полиплоидные клетки корня. Ткань клубеньков, заполненная бактериями, приобретает розовую окраску, так как поте заражения в клетках бактерий образуется пигмент, сходный с гемоглобином, — леггемоглобин. Этот пигмент связывает кислород воздуха и тем самым предохраняет фермент нитрогеназу от воздействия кислорода. Исследования показали прямую зависимость между содержанием леггемоглобина и скоростью фиксации азота. При отсутствии леггемоглобина азот не усваивается. Информация об образовании леггемоглобина содержится в ДНК ядра клетки высшего растения. Синтезируется клетками растения-хозяина. Однако он образуется после их заражения. Гены растений, кодирующие образование клубеньков, носят название nod-GENE (нодулин-гены). Показано, что скопление бактерий вокруг корня вызывает выделение веществ (возможно олигосахаров), которые активируют т.н. нодулин-белок, индуцирующий транскрипцию нодулин-генов. Взаимоотношения между высшими растениями и клубеньковыми бактериями обычно характеризуют как симбиоз. Однако на первых этапах заражения бактерии питаются целиком за счет высшего растения, т. е. практически паразитируют на нем. В этот период рост зараженных растений даже несколько тормозится. В дальнейшем азотфиксирующая способность бактерий увеличивается, и они начинают снабжать азотистыми веществами растение-хозяина, вместе с тем бактерии получают от высшего растения углеводы (симбиоз). По мере дальнейшего развития наступает этап, когда высшее растение паразитирует на клетках бактерий, потребляя все образующиеся там азотистые соединения. В этот период часто наблюдается растворение (лизис) бактериальных клеток.

Благодаря деятельности клубеньковых бактерий часть азотистых соединений из корней бобовых растений диффундирует в почву, обогащая ее азотом. Посев бобовых растений ведет к повышению почвенного плодородия. Гектар бобовых растений в симбиозе с бактериями может перевести в связанное состояние от 100 до 400 кг азота за год. Значение этого трудно переоценить, если учесть, что азотные удобрения наиболее дорогостоящи, а в почве соединения азота содержатся в небольших количествах. Существуют и другие виды высших растений, у которых наблюдается симбиоз с микроорганизмами. Так, маленький водный папоротник азолла (Azolla) находится в симбиотических отношениях с азотфиксирующими цианобактериями. Азолла способна фиксировать до 0,5 кг азота на га в сутки. Некоторые деревья и кустарники (например, ольха, облепиха, лох) имеют в качестве симбионтов бактерии из рода актиномицеты. Большое значение имеют свободноживущие бактерии — азотфиксаторы. В 1893 г. русским микробиологом С.Н. Виноградским была выделена анаэробная азотфиксирующая бактерия Clostridium pasteurianum. В 1901 г. голландский ученый М. Бейеринк выделил две аэробные азотфиксирующие бактерии — Azotobacter chroococum, Azotobacter agile. Сейчас известен ряд видов Azotobacter. Свободноживущие азотфиксаторы могут быть факультативными аэробными или факультативными анаэробными. Для того чтобы эти микроорганизмы осуществляли процесс фиксации азота, необходимо присутствие молибдена, железа и кальция. Особенно важно присутствие молибдена. Свободно живущие азотфиксаторы {Azotobacter) усваивают в среднем около 1 г азота на 1 м2 в год. Усваивать атмосферный азот способны и многие другие бактерии: клебсиеллы, бациллы и т. д. Особый интерес представляют цианобактерии, вызывающие цветение пресных и океанических водоемов. В ряде стран их разведение практикуется на рисовых полях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *