Ассоциативные азотфиксаторы

Ассоциативные азотфиксаторы были обнаружены в 70—80-х годах XX в. в лаборатории Д. Доберейнер в Бразилии (1976). Число их видов велико, как велико разнообразие ассоциативных взаимоотношений растений с микроорганизмами. Такие отношения характерны для ризосферных микроорганизмов, т. е. живущих на поверхности корневой системы растений. Часто микробиологи не делают различия между ассоциативными и свободноживущими азотфиксаторами. Последовательность взаимоотношений с… Читать далее Ассоциативные азотфиксаторы

Классификация азотфиксаторов

Организмы, способные к усвоению азота воздуха, можно разделить на группы: 1) симбиотические азотфиксаторы — микроорганизмы, которые усваивают азот атмосферы, только находясь в симбиозе с высшим растением; 2) не симбиотические азотфиксаторы — микроорганизмы, свободно живущие в почве и усваивающие азот воздуха; 3) ассоциативные азотфиксаторы — микроорганизмы, обитающие на поверхности корневой системы злаков, т. е. живущие в… Читать далее Классификация азотфиксаторов

Влияние внешних условий на поступление солей в растительный организм

При температуре, близкой к 0°С, поглощение солей идет медленно, затем, в пре­делах до 40°С, оно усиливается. Увеличение температуры на 10°С может вызвать возрастание поглощения в два и даже в три раза. В темноте поглощение солей замедляется и постепенно прекращается, а под влиянием освещения ускоряется. Так, при освещении поглощение фосфора уси­ливается уже через 2—5 мин. Быстрота… Читать далее Влияние внешних условий на поступление солей в растительный организм

Роль корневой системы в минеральном питании растения

Еще Кноп и Сакс показали, что растение хорошо усваивает питательные веще­ства из минеральных солей. Однако, в присутствии микроорганизмов сложно установить, что высшее растение по­глощает соединения именно в той форме, в которой они первоначально введе­ны в питательную смесь. Решение вопроса о доступных формах питательных веществ было осуществле­но в опытах, проведенных в стерильных условиях. Впервые И.С. Шуловым… Читать далее Роль корневой системы в минеральном питании растения

Передвижение элементов минерального питания (восходящий ток)

Использование меченого фосфора позволило установить, что передвижение солей идет быстрее при усилении транспирации и замедляется при уменьшении этого процесса. Если листья закрыть полиэтиленовыми пакетами, то транспирация задержится, и скорость перемещения соответственно уменьшится. Эти опыты подтвердили, что передвижение питательных веществ в восходящем направлении идет по сосудам ксилемы вместе с водой. Однако скорость переноса растворенных веществ по… Читать далее Передвижение элементов минерального питания (восходящий ток)

Фосфор

Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в ви­де окисленных соединений, главным образом остатков ортофосфорной кисло­ты (Н2Р04-, HP042-, Р043-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ),… Читать далее Фосфор

Железо

Железо входит в состав растения в количестве 0,08%. Необходимость железа была показана в тот же период, что и остальных макроэлементов. Поэтому, не­смотря на ничтожное содержание, его роль рассматривается вместе с макроэле­ментами. Железо поступает в растение в виде Fe3+, а транспортируется в листья по ксилеме в виде цитрата железа (III). Роль железа в большинстве случаев связана… Читать далее Железо

Калий

Содержание калия в растении в среднем составляет 0,9%. Он посту­пает в растение в виде иона К+. Физиологическую роль калия нельзя считать полностью выясненной. Калий не входит ни в одно органическое соединение. Большая часть его (70%) в клетке находится в свободной ионной форме и легко извлекается холодной водой, ос­тальные 30% в адсорбированном состоянии. В противоположность кальцию… Читать далее Калий

Магний

Содержание магния в растениях составляет в среднем 0,17%. Маг­ний поступает в растение в виде иона Mg2+. Магний входит в состав основного пигмента зеленых листьев — хлорофилла. Магний поддерживает структуру рибосом, связывая РНК и белок. Большая и малая субъединицы рибосом ассоциируют вместе лишь в присутствии маг­ния, который также необходим для формирования полисом и активации ами­нокислот. Поэтому… Читать далее Магний

Сера

Сера содержится в растениях в количестве 0,17%. Однако в растениях семей­ства крестоцветных ее содержание гораздо выше. Поступает сера в растения в основном в виде сульфатиона S042- через корневое питание, однако при высокой концентрации серосодержащих веществ в атмосфере, возможно поступление оксидов серы через устьицы и поры. Сера входит в состав трех аминокислот — цистина, цистеина и… Читать далее Сера